Evidence for direct activation of an anthocyanin promoter by the maize C1 protein and comparison of DNA binding by related Myb domain proteins.
نویسندگان
چکیده
The enzyme-encoding genes of two classes of maize flavonoid pigments, anthocyanins and phlobaphenes, are differentially regulated by distinct transcription factors. Anthocyanin biosynthetic gene activation requires the Myb domain C1 protein and the basic helix-loop-helix B or R proteins. In the phlobaphene pathway, a subset of C1-regulated genes, including a1, are activated by the Myb domain P protein independently of B/R. We show sequence-specific binding to the a1 promoter by C1 in the absence of B. Activation is decreased by mutations in the C1 DNA binding domain or in a1 sequences bound by C1, providing direct evidence for activation of the anthocyanin biosynthetic genes by C1. The two C1 binding sites in the a1 promoter are also bound by P. One site is bound with higher affinity by P relative to C1, whereas the other site is bound with similar lower affinity by both proteins. Interestingly, either site is sufficient for C1 plus B/R or P activation in vivo, demonstrating that differences in DNA binding affinities between P and C1 are insufficient to explain the differential requirement for B. Results of DNA binding site-selection experiments suggest that C1 has a broader DNA binding specificity than does P, which may help C1 to activate a more diverse set of promoters.
منابع مشابه
Functional analysis of the transcriptional activator encoded by the maize B gene: evidence for a direct functional interaction between two classes of regulatory proteins.
The B, R, C1, and Pl genes regulating the maize anthocyanin pigment biosynthetic pathway encode tissue-specific transcriptional activators. B and R are functionally duplicate genes that encode proteins with the basic-helix-loop-helix (b-HLH) motif found in Myc proteins. C1 and Pl encode functionally duplicate proteins with homology to the DNA-binding domain of Myb proteins. A member of the b-HL...
متن کاملActivation of the maize anthocyanin gene a2 is mediated by an element conserved in many anthocyanin promoters.
Two transcription factors, C1 (a Myb-domain protein) and B (a basic-helix-loop-helix protein), mediate transcriptional activation of the anthocyanin-biosynthetic genes of maize (Zea mays). To begin to assess the mechanism of activation, the sequences required for C1- and B-mediated induction have been determined for the a2 promoter, which encodes an anthocyanin-biosynthetic enzyme. Analysis of ...
متن کاملAn ACT-like domain participates in the dimerization of several plant basic-helix-loop-helix transcription factors.
The maize basic-helix-loop-helix (bHLH) factor R belongs to a group of proteins with important functions in the regulation of metabolism and development through the cooperation with R2R3-MYB transcription factors. Here we show that in addition to the bHLH and the R2R3-MYB-interacting domains, R contains a dimerization region located C-terminal to the bHLH motif. This protein-protein interaction...
متن کاملMembers of the c1/pl1 regulatory gene family mediate the response of maize aleurone and mesocotyl to different light qualities and cytokinins.
We investigated the role of transcription factors (R, SN, C1, and PL) in the regulation of anthocyanin biosynthesis by different light qualities (white, red, blue, and ultraviolet) and by cytokinin in maize (Zea mays). We analyzed anthocyanin accumulation, structural gene expression, and regulatory gene expression in the seed aleurone and the seedling mesocotyl. In the mesocotyl, white, blue, a...
متن کاملExpression patterns of myb genes from Antirrhinum flowers.
Six genes that contain sequence encoding the DNA binding domain of the Myb oncoproteins have been isolated from a cDNA library prepared from Antirrhinum majus (snapdragon) flowers using oligonucleotide probes directed against part of this domain. The derived amino acid sequences of these genes reveal acidic domains in their carboxy termini, suggesting that they might act as transcriptional acti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 9 4 شماره
صفحات -
تاریخ انتشار 1997